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In a previous paper [1], J. J. Williams and R. Wong studied the problem
of the title and its application to the extension of the scalar form of Watson's
lemma. In their work, a key assumption is that the matrix is normal. In the
present paper, the problem is studied without this assumption.

In Section I, we present a definition of asymptotic expansion for functions
of matrix argument and give conditions whenj(z), z a scalar, has an asymp­
totic expansion with z replaced by a matrix A. In Section II, the analog of
Watson's lemma is treated. Some results concerning the asymptotic but
divergent series expansion of the exponential integral are reviewed in
Section II. The analogous matrix expansion also diverges. This suggests use
of rational approximations, say of the Pade type, and Chebyshev expansions.
This is also treated in Section III. Finally, the ideas are illustrated with
numerical examples in Section IV.

I. DEFINITION OF EXPANSIONS FOR FUNCTIONS OF MATRIX ARGUMENT

Let A be an n X n matrix with complex entries, A = (au).

DEFINITION. We say that the formal series

(1)

is an asymptotic expansion of the function j(A), where j(z) is defined and
analytic on the spectrum a(A), if for all N ~ n,

N

II/(A) - L bkA-k II = 0(11 A-N II)
k=O

(2)
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as II A-l II ---.... O. In this event, we write

f(A) ,.....,., I bkA-k,
k~O

II A-111---.... o. (3)

Here the norm is understood to be a least upper bound norm on
the matrices of complex numbers.

Let J == J(A) be the Jordan normal form of A. Then there exists a non­
singular matrix P such that p-lAP = J and clearly

n a positive integer or zero. (4)

We will have need for the condition number of P which is defined as

n(P) = II P III1 P-111· (5)

The following assumptions are made on the spectrum of A, a(A), and n(P)
respectively.

u(A) C {A; A oF 0, I arg(A - 0)1 < J},

o < J < 7T/2, 0<0 < 27T.
(6)

n(P) is bounded as II A-l II ---.... O.

We prove the following

(7)

THEOREM 1. Let fez) be analytic in the domain I arg(z - 0)[ < J and
let fez) have the asymptotic series expansion

en

fez) ,.....,., I bkz-k,
k~O

(8)

with arg z restricted as above. Let A be a matrix satisfying the conditions
(6) and (7). Then

en

f(A) ,.....,., I bkA-k,
k=O

(9)

Proof Let N ? n. Since matrix norms are equivalent, we choose the
row-sum norm

(10)
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It is sufficient to prove that

'"f(J) r-..J L bkJ-k,
k~O

for if (11) is true, we have

IIf(A) - ktO bkA-k II = II P j!(J) - ktO bkJ-k! p-111
N

~ n(P) Ilf(]) - L bkJ-k II
k~O

95

(11)

~ m(P) II J-N II ~ €{n(P)}211 A-N II. (12)

Since € can be made arbitrarily small and n(P) is bounded, the theorem follows
once we have established (11). To this end, let B be a block of order m of
the Jordan normal form of A which we write as

A I 0 0 0 0
0 A 1 0 0 0
0 0 A 1 0 0

B= 0 0 0 A 0 0
(13)

0 0 0 0 A 1
0 0 0 0 0 A

Then a straightforward computation shows that for any fez),

feB) =

f(A) rCA) ;! rCA)

o f(A) rCA)

1 j<m-l)(A)
(m - I)!

-;--_I~ j<m-2)(A)
(m - 2)! (14)

If

o o o f(A)

'"
g(z) = L CkZ- k, (15)

k~O

'"glrl(z) = (-IY L {(k + r - 1)!j(k - I)!} Ckrk-r. (16)
k~O
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N

gN(Z) = L CkZ-k,
k~O

gN(B) gN(B) 1 (m-l)(B)
(m - I)!gN

N
1 (m-2)(B)L bkB-k = 0 gN(B)

k~O
(m - 2)!gN

0 0, gN(B)

(17)

(18)

In view of (8), we have

I jT(~) _ (-~y £ (k + r - 1)' ~kA-k-r I = 0(1 AI-N). (19)
r. r. k=O (k - 1).

So, from (10),

N

Ilf(B) - k~O bkB-k II

~ mf If<rl(A) _ (_1)r-l, £ (k + r - I)! b~z-k-r+1 I. (20)
r~O (r - 1). k=O (k - 1).

But

m N'
II B-NII = L " I A-N- r I = I A-N I + 0(1 A-N I). (21)

r=O (N - r).

Thus

N

Ilf(B) - k~O bkB-k II = 0(11 B-N II).

That is,

00

feB) ,...., L bkB-k,
k=O

and the statement (9) follows.

(22)

(23)

COROLLARY 1. If A is a normal matrix satisfying (6), and if fez) is as in
the above theorem, then

00

f(A) ,...., L bkA-k.
k~O

(24)
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Proof Take the spectral norm IL(A) subordinate to the 12 norm where
12(x) = (X*X)1/2. Then A is a unitarily equivalent to a diagonal matrix.
We can take P in the definition of J, see [4], to be unitary. Then p-l is also
unitary and n(P) = 1.

COROLLARY 2. If A = exC where ex is a positive scalar and C is diago­
nalizable, and ifJ(z) satisfies the conditionsJor the above theorem, then

'"f(exA) ,....., L bkexkA-k
k=O

as ex - 00. (25)

II. WATSON'S LEMMA

In this section we treat the analog of Watson's lemma for functions of
matrix argument. Rather than give a detailed proof of same, we state a
result of J. J. Williams and R. Wong [1] for closed operators and show that
our system of matrices satisfy the hypotheses of their theorem.

It is convenient to first state Watson's lemma in the scalar case. Let J(t)
be locally integrable on [0, 00), and let

g(z) = f'" e-z!J(t) dt
o

whenever the integral on the right converges. Let

(26)

'"
J(t) = L aktk /r -l,

k=l
I t I ~ c + S, (27)

where r, c and S are positive, and let there exist positive constants Nand b
independent of t such that

Then

IJ(t)1 ~ Nebt
, t :): c. (28)

'"
g(z) ,....., L akr(kjr) z-k/r,

k=l

I z 1- 00, I arg z I ~ Tr/2 - L1, LI > O.
(29)

Consider a closed operator A which satisfies the following two conditions
on the spectrum u(A).

There exists a positive LI such that

u(A) C {,\ E C: ,\ =1= 0 and I arg'\ I ~ Trj2 - L1}. (30)
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Let w(A) = inf{Re A: A E a(A)}. There exists M > 0 and 0 < WI ~ w(A)
such that for any positive integer m,

(31)
RlA) = (A - A/)-I.

THEOREM 2. (Williams and Wong). Let A be a closed linear operator
satisfying conditions (30) and (31) with the same Ll and m and such that there
is a positive 'Y} with WI ~ 'Y}w(A). Let /(t) satisfy the conditions of Watson's
lemma. Then the bounded linear operator

g(A) = (J e-Atj(t) dt
o

has the asymptotic expansion

(32)

<X>

g(A) "-' L akr(k/r) A-klr
k~1

as II A-I II -+ o. (33)

Now our condition (6) is related to the condition (30). Let A be an n X n
matrix which satisfies (7) and (30). We want to show that A satisfies the con­
dition (31), and the remaining hypothesis of Theorem 1.

Write the Jordan normal form of A as

(34)

so that U1 has the largest of the orders of the associated unit matrices belong
to Al and order U1 = P ~ n = order J. Then

and

(RlA)m) = (A - AI)-m = P(J - AI)-m p-l, (35)

Let A < t Re(A1) whence Re(AI - A)-1 ~ I A} - A 1-1. Let II A II be the row
sum norm subordinate to the t 1 norm in en, see Faddeeva [2, p. 58]. We need
to compute II(J - M)-m II. It suffices to evaluate

IIQII, (37)
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and so

m(A1 - A)-m-l
(A1-A)-m

o

(m+p-1)!(,\-A)-m-1J/(m-1)! J
(m+p-2)!(Al~A)-m-p-l/(m-1)! ,

(A1 -A)-m

(38)

p

II Q II = I Al - Al-m L (m + r - 1)! I Al - AI-r/(m - 1)!. (39)
r~O

Now choose WI = t Re Al . Then the right hand side of (39) can be bounded
so that

(40)

where M 1 is a positive constant which does not depend upon m. Hence

Then for II A-III - 0, we see that inf w(A) > 0 and the hypotheses of
Theorem 1 are satisfied with 'YJ = t. We have the following result.

TH:EOREM 3. Let A be a matrix such that the conditions (7) and (30)
are satisfied and II A-1 11_ O. Let J(t) satisfy the conditions of Watson's
lemma, see (26)-(30). Ifg(A) is defined by (32), then g(A) has the asymptotic
expansion given by (33).

As a corollary, Williams and Wong show that the condition (31) is always
satisfied by normal operators on a Hilbert space and hence by normal
matrices. In our treatment, the matrix A need not be normal.

III. THE EXPONENTIAL INTEGRAL

Consider

S(z) = ze"E1(z) = ze" f' (z + f)-I e-t dt.
o

We have the divergent but asymptotic expansion

'"S(z) "" L (_)k k! Z-k,
k~O

(42)

(43)

z 1_ 00 I arg z I < 37T/2.
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n-1

Sn(Z) = L (-l)k k! r k.
k~O

(44)

It is well known that if z is positive, then for any m a positive integer or zero,

(45)

Clearly if A is a matrix satisfying the conditions of Theorem 3, then the
asymptotic expansion of SeA) is given by (43) and this series is divergent.
Thus use of (43) with Z a scalar or z replaced by A is limited. Now in the
scalar case, there are sequences of rational approximations and Chebyshev
expansions which are based on (44) which converge. This suggests that
such sequences be used in the matrix case as well. The following result in
matrix theory is well known, see Dunford and Schwartz [3], Gantmacher [4]
or Lancaster [5]. Letfm(z) ~ fez) uniformly on a domain D. If A is an n X n
matrix for which a(A) C D, then ftA) and fm(A) are defined and .R.m(A) =
f(A) - fm(A) --+ °uniformly. Hence each component of the error matrix
must ~ 0, and so any matrix norm of the error must also ~ 0.

We shall be concerned with two types of norms and it is now convenient
to define them. Let B = (bij), i,j = 1,2'00" n. Then

n

II Bill = max I I bij [,
i i=l

(46)

I[ B 112 = max II Bx II, II x II = 1 in the Euclidean sense. (47)

If B* is the complex conjugate transpose of B, then

II B II~ = largest eigenvalue of BB*,

and if B is Hermitian,

II B 112 = largest eigenvalue of B.

(48)

(49)

Another important consideration for II B 112 is that if B is Hermitian and
positive definite, then any inequality satisfied by fez) must also be satisfied
by f(A), see [6. p. 271]. In particular, if A is Hermitan and positive definite,
then from (45)

(50)

To clarify some of the numerics in the next section, it is helpful to present·
some data for certain Pade approximations for S(z). For material on Pade
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approximation and in particular for the first subdiagonal and main diagonal
Pade approximations for S(z), see Luke [7, 8]. Let us write

S(z) = Cn,a(z) + Rn,a(z), (51)

(52)

where An-iz) and Bn(z) are polynomials in Z-1 of degree n - a and n respec­
tively with a = 0 (main diagonal Pade) or a = 1 (first subdiagona1 Pade).
Also Rn.a(z) is the remainder. Thus

Co.o(z) = 1, C (z) _ Z2 + 5z + 2
2.0 - Z2 + 6z + 6 '

C (z) _ Z2 + 3z
2.1 - Z2 + 4z + 2 '

(53)

and further entries are readily generated by the use of a recurrence formula,
see the cited references. The Pade approximations have the property that

Also

(54)

lim R n iz) = 0,
n-+OO •

z fixed, I arg z I < 7T. (55)

Further, we have the important inequality,

Cn,I(Z) < S(z) < Cn.o(z), z > 0, (56)

with equality as z -+ OCJ provided n > 0.
Another important class of representations treated in Luke [7,8] are

expansions in series of shifted Chebyshev polynomials of the first kind
T*( y). In particular, we have

Sex) = sZ(x) + R'tcx),

The series is convergent, that is

N-l

st(x) = L CkT:(5/x), x ~ 5. (57)
k~O

lim Rt(x) = 0.
N-.",

and since I TJ(y)! ~ 1 for °~ y ~ 1, we have

<Xl

!RZ(x)! ~ CN = LIck I·
k~N

(58)

(59)
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The eT;s are given to 20 decimals in the sited sources. Like coefficients for
many other special functions are also recorded. If the coefficients Ck decrease
with sufficient rapidity as is the case for the exponential integral, only one
or two terms of the bounding series is enough to furnish a realistic appraisal
of the error. Clearly (57) holds with x replaced by A provided the eigenvalues
of B = 5A-I, call them fL are such that 0 < fL :(; 1. Also the backward
recurrence technique for the evaluation of SN(X) readily carries over to the
matrix case. In place of (59), we can make use of the norm noted in (47-49).
So

(60)

IV. NUMERICAL EXAMPLES

EXAMPLE 1. Let

A = (~5 ~~) with eigenvalues 9 and 4.

Now the values of zeZ£1(Z) for z = 9 and 4 are 0.907757602 and 0.82538 2600,
respectively. Then by use of the Lagrange-Sylvester representation, we get

SeA) = ( 0.99013 2604 0.164750004)
-0.082375002 0.74300 7598 .

Values of Sn(A) can be computed in a straight forward manner. This has
been done for n = 1,2,3,4. These data are omitted, but in the table below
we give II Sn(A)llr , r = 1, 2 for n as above.

n II Sn(A)lll II Sn(A)112

1 1.0 1.0

2 1.30556 1.06512

3 1.02932 0.95716

4 1.27765 1.05982

The true values are II S(A)lll = 1.15488 and II S(A)112 = 1.00558. Note that
the inequality (45) does not hold for the norms. According to the numerics,
the inequality would be satisfied if the roles of S2m+2(Z) and S2m+l(Z) were
interchanged. We know of no theorems in this connection save that we cannot
guarantee an inequality patterned after (45) because A is not symmetric.

In the following table, we present data for the Pade approximations for
SeA) described in the previous section.
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n II Cn,l(A)lll II Cn,o(A)lll II Cn,l(A)112 II C".o(A)112

0 0 1.0 0 1.0

1 1.2 1.13636 0,98033 0.99838

2 1.15966 1.15294 1.00755 1.00477

4 1.15484 1.00556

00 1.15488 1.15488 1.00558 1.00558

In this table the dash means that this entry was not computed. Note that the
matrix norm analog of (56) does not hold. To illustrate the approximation
process, we record

(
0.99011 87 0.16472 19)

C4 •o(A) = -0.0823609 0.7430359'

EXAMPLE 2. Let

A = (~ ;) with eigenvalues 9 and 4.

The calculations are the same as those for Example 1. We therefore state
the results and keep the discussion to a minimum.

SeA) = (0.89128 2602 0.032450001 )
0.03295 0001 0.841857600

n II Sn(A)lll II Sn(A)112

1 1.0 1.0

2 0.91667 0.88889

3 0.92130 0.91358

4 0.93017 0.90535

The true values are II S(A)!ll = 0.92423 and II S(A)112 = 0.90776.

n II Cn.l(A)lll II Cn.o(A)lll II C".l(A)112 II Cn.o(A)112

0 0 1.0 0 1.0
1 0.92000 0.92424 OOסס0.9 0.90909
2 0.92437 0.92414 0.90756 0.90780
4 0.92423 0.90776
00 0.92423 0.92423 0.90776 0.90776
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Note that A is symmetric and positive definite so that the matrix norm
analogs of (45) and (56) with norm defined by (49) hold. It is instructive to
record

(
0.89128 56 0.0329444)

C4 •o(A) = 0.0329444 0.8418690'

EXAMPLE 3.

A = G ~) with eigenvalues 10 and 5.

For x = 5 and 10, we have Sex) = 0.85211 0880 and 0.91563 3339 respec­
tively. So

SeA) = (0.90292 8847 0.025408984)
0.025408984 0.86481 5372 .

For application of (57) note that the eigenvalues of B = 5A-l are 1 and t.
With N = 6 and the values of the Ck'S given in [4,5], we find

S*(A) = (0.9029296 0.0254098)
6 0.0254098 0.86481 47 .

Also C6 = 0.150 . 10-5•
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